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Abstract: In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy Cohen-Grossberg
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1 Introduction
In recent years, Cohen and Grossberg neural network-
s [1] have been extensively studied and applied in
many different fields such as associative memory, sig-
nal processing and some optimization problems. In
such applications, it is of prime importance to ensure
that the designed neural networks are stable [2]. In
practice, due to the finite speeds of the switching and
transmission of signals, time delays do exist in a work-
ing network and thus should be incorporated into the
model equation [3, 4, 6, 7, 8, 9, 10, 11, 12]. In recen-
t years, the dynamical behaviors of Cohen-Grossberg
neural networks with constant delays or time-varying
delays or distributed delays have been studied, see for
example Refs. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the
references therein.

Most neural networks widely studied and used
can be classified as either continuous or discrete. Re-
cently there has been a somewhat a new category of
neural networks, which is neither purely continuous-
time nor purely discrete-time ones; these are called
impulsive neural networks. This third category of neu-
ral networks display a combination of both charac-
teristics of continuous-time and discrete-time systems
[13, 14, 15, 16, 17, 18].

In addition to the delay and impulsive effects, s-
tochastic effects constitute another source of distur-
bances or uncertainties in real systems [19, 20, 21].

A lot of dynamical systems have variable structures
subject to stochastic abrupt changes, which may re-
sult from abrupt phenomena such as stochastic fail-
ures and repairs of the components, changes in the in-
terconnections of subsystems or sudden environmen-
t switching [21]. Therefore, stochastic perturbations
should be taken into account to neural networks. In
recent years, the dynamic analysis of stochastic sys-
tems (including neural networks) with delays has been
an attractive topic for many researchers, and a large
number of stability criteria of these systems have been
reported, see e.g. Refs. [19, 20, 21] and the references
therein.

In this paper, we would like to integrate fuzzy
operations into Cohen-Grossberg neural networks. S-
peaking of fuzzy operations, T. Yang and L. B. Yang
[22] first introduced fuzzy cellular neural network-
s (FCNNs) combining those operations with cellular
neural networks. So far researchers have founded that
FCNNs are useful in image processing, and some re-
sults have been reported on stability and periodicity of
FCNNs [23, 24, 25, 26, 27, 28, 29]. However, to the
best of our knowledge, few author investigated the sta-
bility of impulsive stochastic fuzzy Cohen-Grossberg
neural networks with mixed delays.

Motivated by the above discussions, in this paper,
we consider the following impulsive stochastic fuzzy

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Qianhong Zhang, Jingzhong Liu, Yuanfu Shao

E-ISSN: 2224-266X 182 Issue 6, Volume 12, June 2013



Cohen-Grossberg neural networks with mixed delays.



dxi(t) = −ai(xi(t)) [bi(xi(t))

−
∑n
j=1 cijfj(xj(t− τij(t)))−∧n

j=1 αij
∫ t
−∞Kij(t− s)gj(xj(s))ds

−
∨n
j=1 βji

∫ t
−∞Kij(t− s)

× gj(xj(s))ds+ Ii] dt+
∑n
j=1

σij(xj(t), xj(t− τij(t)))dωj(t),

t 6= tk, k = 1, 2, · · · ,

∆i(xi(tk)) = Jk(xi(t
−
k )), i = 1, 2, · · · , n.

(1)
where n corresponds to the number of units in the neu-
ral networks, respectively. For i = 1, 2, · · · , n, xi(t)
corresponds to the state of the ith neuron. fj(·), gj(·)
are signal transmission functions. τij(t) corresponds
to the transmission delay along the axon of the jth unit
from the ith unit and satisfies 0 ≤ τij(t) ≤ τij(τij is a
constant). ai(xi(t)) represents an amplification func-
tion at time t. bi(xi(t)) is an appropriately behaved
function at time t such that the solutions of model (1)
remain bounded; cij represents the elements of the
feedback template. Ii = Ĩi +

∧
Tijuj +

∨
Hijuj .

αij , βij , Tij and Hij are elements of fuzzy feedback
MIN template and fuzzy feedback MAX template,
fuzzy feed-forward MIN template and fuzzy feed-
forward MAX template, respectively;

∧
and

∨
denote

the fuzzy AND and fuzzy OR operation , respective-
ly; uj denotes the external input of the ith neurons.
Ĩi is the external bias of the i−th unit. Kij(·) is the
delay kernel function; σij(xj(t), xj(t− τij(t))) is the
diffusion coefficient, σi = (σi1, σi2, · · · , σin): ω(t) =
(ω1(t), ω2(t), · · · , ωn(t))T is an n-dimensional Brow-
nian motion defined on a complete probability s-
pace (Ω, F, {Ft}t≥0, P ) with a filtration {Ft}t≥0 sat-
isfying the usual conditions (i.e., it is right continu-
ous and F0 contains all P -null sets). ∆(xi(tk)) =
xi(t

+
k ) − xi(t

−
k ) is the impulses at moment tk, the

fixed moments of time tk satisfy t1 < t2 <
· · · , limk→+∞ tk = +∞, and min2≤k≤∞{tk −
tk−1} > max1≤i,j≤n{τij}.

Remark 1. Model (1) includes the following impul-
sive Cohen-Grossberg neural network model as a spe-

cial case:

dxi(t) = −ai(xi(t)) [bi(xi(t))

−
∑n
j=1 cijfj(xj(t− τij(t)))

−
∧n
j=1 αij

∫ t
−∞Kij(t− s)

×gj(xj(s))ds

−
∨n
j=1 βji

∫ t
−∞Kij(t− s)

× gj(xj(s))ds+ Ii] dt,

t 6= tk, k = 1, 2, · · · ,

∆i(xi(tk)) = Jk(xi(t
−
k )), i = 1, 2, · · · , n.

(2)
Since the solution x(t) = (x1(t), x2(t), · · · , xn(t))T

of model (2) is discontinuous at the point tk , by theo-
ry of impulsive differential equations, we assume that
x(tk) = (x1(tk), x2(tk), · · · , xn(tk))

T = (x1(tk +
0), x2(tk+0), · · · , xn(tk+0))T . It is clear that, in gen-
eral, the derivatives dxi(tk)

dt don’t exist. On the other
hand, we can see from the first equation of model (2)
that the limits dxi(tk∓0)

dt exist. According to the above
convention, we assume that dxi(tk)dt = dxi(tk+0)

dt .
Furthermore, if Cohen-Grossberg neural network

model with neither impulses nor stochastic effects,
model (1) can be transformed to the following special
case

dxi(t) = −ai(xi(t)) [bi(xi(t))

−
n∑
j=1

cijfj(xj(t− τij(t)))

−
n∧
j=1

αij

∫ t

−∞
Kij(t− s)gj(xj(s))ds

−
n∨
j=1

βji

∫ t

−∞
Kij(t− s)gj(xj(s))ds

+Ii] dt (3)

For convenience, we introduce several notations.
x = (x1, x2, · · · , xn)T ∈ Rn denotes a column
vector. ‖x‖ denotes a vector norm defined by
‖x‖ = (

∑n
i=1 |xi|2)1/2. C[X,Y ] denotes the space

of continuous mappings from topological space X to
topological space Y . Denoted by CbF0

[(−∞, 0), Rn]
the family of all bounded F0−messurable,
C[(−∞, 0), Rn]−valued random variables φ,
satisfying ‖φ‖LP = sup−∞≤θ≤0E‖φ(θ)‖ < +∞,
where E(·) denotes the expectation of stochastic
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process. The initial condition φ ∈ CbF0
[(−∞, 0), Rn].

PC[I,R] = {ψ : I → Rn|ψ(t+) = ψ(t), t ∈
I, ψ(t−) exist for t ∈ (t0,+∞), ψ(t−) = ψ(t) for
all but points tk ∈ (t0,+∞)}, where I ⊂ R is
an interval, ψ(t+) and ψ(t−) denote the left-hand
limit and right-hand limit of the scalar function ψ(t),
respectively.

Throughout the paper, we give the following as-
sumptions

(A1) ai(u) is a continuous function and
0 < ai ≤ ai(u) < ai(ai and ai are constant)
for all u ∈ R, i = 1, 2, · · · , n.
(A2) The signal transmission functions
fj(·), gj(·)(j = 1, 2, · · · , n) are Lipschitz con-
tinuous on R with Lipschitz constants µj and νj ,
namely, for any u, v ∈ R, fj(0) = gi(0) = 0 and

|fj(u)−fj(v)| ≤ µj |u−v|, |gi(u)−gi(v)| ≤ νi|u−v|.

(A3) bi(·) ∈ C(R,R) and there exist positive con-
stants bi such that

bi(u)− bi(v)

u− v
≥ bi, ∀u 6= v, i = 1, 2, · · · , n.

(A4) The delay kernel Kij : [0,+∞) → [0,+∞)
is a real-valued non-negative continuous function and
satisfies ∫ +∞

0
eδsKij(s)ds = rij(δ).

where rij(δ) is continuous function in [0, η), η > 0,
and rij(0) = 1, i, j = 1, 2, · · · , n.
(A5) There exist non-negative number sij , wij such
that

σi(u, v)σTi (u, v) ≤
n∑
j=1

siju
2 +

n∑
j=1

wijv
2

for all u = (u1, u2, · · · , un)T ∈ Rn, v =
(v1, v2, · · · , vn)T ∈ Rn, i = 1, 2, · · · , n.

Definition 1 The equilibrium point x∗ =
(x∗1, x2, · · · , x∗n)T of system (1) is said to be
global mean square exponential stable, if there exist
positive constants M ≥ 1, λ > 0 such that

E(‖x(t)− x∗‖2) ≤M‖φ− x∗‖2L2e−λ(t−t0), t > 0.

where x(t) = (x1(t), x2(t), · · · , xn(t))T is any solu-
tion of model (1) with initial value xi(t+s) = φi(s) ∈
PC((−∞, 0], R), i = 1, 2, · · · , n.

Definition 2 A real matrix A = (aij)n×n is said to
be an M−matrix if aij ≤ 0(i, j = 1, 2, · · · , n; i 6= j)
and successive principal minors of A are positive.

Lemma 3 LetQ be an n×nmatrix with non-positive
off-diagonal elements, then Q is an M -matrix if and
only if one of the following conditions holds:
(i) There exists a vector ξ > 0 such that ξTQ > 0;
(ii) There exists a vector ξ > 0 such that Qξ > 0.

Lemma 4 [22] Suppose x and y are two states of sys-
tem (1.1), then we have∣∣∣∣∣∣
n∧
j=1

αijgj(x)−
n∧
j=1

αijgj(y)

∣∣∣∣∣∣ ≤
n∑
j=1

|αij ||gj(x)−gj(y)|,

and∣∣∣∣∣∣
n∨
j=1

βijgj(x)−
n∨
j=1

βijgj(y)

∣∣∣∣∣∣ ≤
n∑
j=1

|βij ||gj(x)−gj(y)|.

Lemma 5 If H(x) ∈ C0 satisfies the following con-
ditions:
(i) H(x) is injective on Rn;
(ii) ‖H(x)‖ → +∞ as ‖x‖ → +∞,
then H(x) is homeomorphism of Rn onto itself.

2 Main results
In this section, we will consider the existence and
global mean square exponential stability of system
(1).

Theorem 6 Under condition (A1) − (A5), and
−(Q+ T ) is an M−matrix, where

Q = (qij)n×n, qij =
1

ai
sij , i 6= j;

qii = −2bi
ai
ai

+
n∑
j=1

|cij |µj+
n∑
j=1

(|αij |+|βij |)νj+
1

ai
sii,

T = (tij)n×n, tij = |cij |µj+
1

ai
wij+(|αij |+|βij |)νj .

then model (3) has a unique equilibrium x∗ =
(x∗1, x

∗
2, · · · , x∗n)T . Furthermore, suppose that

(i) σij(x∗j , x
∗
j ) = 0, i, j = 1, 2, · · · , n.

(ii) Jk(xi(tk)) = −γik(xi(t−k ) − x∗i ), 0 < γik <
2, i = 1, 2, · · · , n; k = 1, 2, · · · .
Then x∗ = (x∗1, x

∗
2, · · · , x∗n)T is a unique equilibrium

which is globally mean square exponential stable.

Proof: Let H(x) = (H1(x), H2(x), · · · , Hn(x))T ,
where

Hi(x) = −bi(xi) +
n∑
j=1

cijfj(xj) +
n∧
j=1

αijgj(xj)

+
n∨
j=1

βijgj(xj)− Ii, i = 1, 2, · · · , n.
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In the following we will prove H(x) is a homeomor-
phism of Rn onto itself.

First, we prove that H(x) is an injective map on
Rn. In fact, if there exist x = (x1, x2, · · · , xn)T ∈ Rn
and y = (y1, y2, · · · , yn)T ∈ Rn, x 6= y, such that
H(x) = H(y), then

bi(xi) − bi(yi)

=
n∑
j=1

cij(fj(xj)− fj(yj))

+
n∧
j=1

αijfj(xj)−
n∧
j=1

αijfj(yj)

+
n∨
j=1

βijfj(xj)−
n∨
j=1

βijfj(yj) (4)

Multiply both side of (4) by |xi − yi|, it follows from
assumptions (A2), (A3), Lemma 4 and element in-
equality 2ab ≤ a2 + b2 that2bi −

n∑
j=1

|cij |µj −
n∑
j=1

(|αij |+ |βij |)νj

 |xi − yi|2
≤

 n∑
j=1

|cij |µj +
n∑
j=1

(|αij |+ |βij |)νj

 |xj − yj |2 (5)

Let Υ = (ζij)n×n, where

ζii = 2bi −
n∑
j=1

|cij |µj −
n∑
j=1

(|αij |+ |βij |)νj

−|cii|µi − (|αij |+ |βij |)νi,

ζij = −|cij |µj−(|αij |+|βij |)νj , i 6= j, i, j = 1, 2, · · · , n
Then (5) transforms into the following inequality

Υ(|x1 − y1|2, |x2 − y2|2, · · · , |xn − yn|2)T ≤ 0 (6)

Set −(Q+ T ) = (κij)n×n, noting that ai ≤ ai, sij >
0, wij > 0, we have

κij ≤ ζij , i, j = 1, 2, · · · , n.

Since −(Q + T ) is an M−matrix, Hence Υ is also
an M−matrix. It follow from (6) that xi = yi, i =
1, 2, · · · , n. which is a contradiction. So H(x) is an
injective on Rn.

Next we prove that ‖H(x)‖ → +∞ as ‖x‖ →
+∞. Since Υ is anM−matrix. From Lemma 3, there
exists a positive vector ξ = (ξ1, ξ2, · · · , ξn)T ∈ Rn

such that

ξi

2bi −
n∑
j=1

|cij |µj + (|αij |+ |βij |)νj


−

n∑
j=1

ξj(|cji|µi + (|αji|+ |βji|)νi) > 0.

for i = 1, 2, · · · , n.We can choose a small % > 0 such
that

ξi

2bi −
n∑
j=1

(|cij |µj + (|αij |+ |βij |)νj)


−

n∑
j=1

ξj(|cji|µi + (|αji|+ |βji|)νi) ≥ % > 0. (7)

for i = 1, 2, · · · , n. Let H̃(x) =

(H̃1(x), H̃2(x), · · · , H̃n(x))T , where

H̃i(x) = −(bi(xi)− bi(0)) +
n∑
j=1

cij(fj(xj)− fj(0))

+
n∧
j=1

αijgj(xj)−
n∧
j=1

αijgj(0)

+
n∨
j=1

βijgj(xj)−
n∨
j=1

βijgj(0) (8)

From assumptions (A2), (A3), and inequality 2ab ≤
a2 + b2, we can get

n∑
i=1

2 ξi|xi|sgn(xi)H̃i(x)

≤
n∑
i=1

ξi
2bi −

n∑
j=1

(|cij |µj + (|αij |+ |βij |)νj)


+

n∑
j=1

ξj(|cji|µi + (|αji|+ |βji|)νi)

 |xi|2
≤ −%‖x‖2

Hence

%‖x‖2 ≤
n∑
i=1

2ξi|xi||H̃i(x)|

≤ 2 max
1≤i≤n

{ξi}
n∑
i=1

|xi||H̃i(x)|

≤ 2 max
1≤i≤n

{ξi}‖xi‖‖H̃i(x)‖

That is
%‖x‖ ≤ 2 max

1≤i≤n
{ξi}‖H̃i(x)‖

Therefore ‖H̃(x)‖ → +∞ as ‖x‖ → +∞, which di-
rectly implies that ‖H(x)‖ → +∞ as ‖x‖ → +∞.
By Lemma 5, we know thatH(x) is a homeomorphis-
m on Rn, hence H(x) = 0 has a unique equilibrium
point x∗ = (x∗1, x

∗
2, · · · , x∗n)T ∈ Rn. i. e., Model (3)

has a unique equilibrium point x∗. From conditions (i)
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and (ii) of theorem, we know that x∗ is also a unique
equilibrium point of model (1).

Set yi(t) = xi(t)− x∗i , σ̃ij(yj(t)) = σij(yj(t) +
x∗j )−σij(x∗j ), then the first equation of system (1) can
be transformed into the following equation

d yi(t)

= −ai(yi(t) + x∗i ) [bi(yi(t) + x∗i )− bi(x∗i )

−
n∑
j=1

cij(fj(yj(t− τij(t)) + x∗j )− fj(x∗j ))

−

 n∧
j=1

αij

∫ t

−∞
Kij(t− s)gj(yj(s) + x∗j )ds

−
n∧
j=1

αij

∫ t

−∞
Kij(t− s)gj(x∗j )ds


−

 n∨
j=1

βji

∫ t

−∞
Kij(t− s)gj(yj(s) + x∗j )ds

−
n∨
j=1

βji

∫ t

−∞
Kij(t− s)gj(x∗j )ds

 dt
+

n∑
j=1

σ̃ij(yj(t), yj(t− τij(t)))dωj(t),

t 6= tk, i = 1, 2, · · · , n; k = 1, 2, · · · (9)

Since −(Q + T ) is an M -matrix, there exists ξ =
(ξ1, ξ2, · · · , ξn)T > 0 such that 0 < −(Q+ T )ξ, that
is

0 <

2bi
ai
ai
−

 n∑
j=1

|cij |µj +
n∑
j=1

(|αij |+ |βij |)νj

 ξi
−

n∑
j=1

[
1

ai
sij + |cij |νj +

1

ai
wij

+(|αij |+ |βij |)νj ] ξj , i = 1, 2, · · · , n.

We can choose a small positive number ε > 0 such
that,for i = 1, 2, · · · , n.

0 <

2bi
ai
ai
− ε

ai
−

 n∑
j=1

|cij |µj

+
n∑
j=1

(|αij |+ |βij |)νj

 ξi
−

n∑
j=1

[
1

ai
sij + eετ

(
|cij |νj +

1

ai
wij

)
+(|αij |+ |βij |)νjrij(ε)] ξj . (10)

Let

ui(t) = eε(t−t0)|yi(t)|2, i = 1, 2, · · · , n.

By the Ito differential formula, the stochastic
derivative of ui(t) along (2.6) can be obtained as fol-
lows:

L ui(t)

= εeε(t−t0)|yi(t)|2 + 2eε(t−t0)|yi(t)|
×sgn(yi(t)) {−ai(yi(t) + x∗i )

[bi(yi(t) + x∗i )− bi(x∗i )

−
n∑
j=1

cij(fj(yj(t− τij(t)) + x∗j )− fj(x∗j ))

−

 n∧
j=1

αij

∫ t

−∞
Kij(t− s)gj(yj(s) + x∗j )ds

−
n∧
j=1

αij

∫ t

−∞
Kij(t− s)gj(x∗j )ds


−

 n∨
j=1

βji

∫ t

−∞
Kij(t− s)gj(yj(s) + x∗j )ds

−
n∨
j=1

βji

∫ t

−∞
Kij(t− s)gj(x∗j )ds


+eε(t−t0)σ̃iσ̃i

T

for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · . Ap-
plying assumptions (A1) − (A3), (A5), and Lemma
4, we can get

L ui(t)

≤ εeε(t−t0)|yi(t)|2 + 2eε(t−t0)|yi(t)|sgn(yi(t))−aibi|yi(t)|+ ai

n∑
j=1

|cij |µj |yj(t− τij(t))|

+ai

n∑
j=1

(|αij |+ |βij |)

×
∫ t

−∞
Kij(t− s)|yj(s)|νjds

]
+ eε(t−t0)

×

 n∑
j=1

sijy
2
j (t) +

n∑
j=1

wijy
2
j (t− τij(t))

 (11)

By applying inequality 2ab ≤ a2 + b2, it follows that

L ui(t)

≤ εui(t)− 2aibiui(t)

+ai

 n∑
j=1

|cij |µjui(t)

+
n∑
j=1

|cij |µjeετijuj(t− τij(t))
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+
n∑
j=1

(|αij |+ |βij |)νjui(t) +
n∑
j=1

(|αij |+ |βij |)νj

×
∫ t

−∞
eε(t−s)Kij(t− s)uj(s)ds

]
+

n∑
j=1

sijuj(t) +
n∑
j=1

wije
ετijuj(t− τij(t))

≤ ai


−2bi

ai
ai

+
ε

ai
+

 n∑
j=1

|cij |µj

+
n∑
j=1

(|αij |+ |βij |)νj

ui(t) +
n∑
j=1

1

ai
sijuj(t)

+eετ
n∑
j=1

(
(|αij |+ |βij |)νj +

1

ai
wij

)

×uj(t− τij(t)) +
n∑
j=1

(|αij |+ |βij |)νj

×
∫ t

−∞
eε(t−s)Kij(t− s)uj(s)ds

}
for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · .
Furthermore, we have

D+ (Eui(t))

≤ ai


−2bi

ai
ai

+
ε

ai
+

 n∑
j=1

|cij |µj

+
n∑
j=1

(|αij |+ |βij |)νj

Eui(t)
+

n∑
j=1

1

ai
sijEuj(t) + eετ

n∑
j=1

((|αij |+ |βij |)νj

+
1

ai
wij

)
Euj(t− τij(t)) +

n∑
j=1

(|αij |+ |βij |)

×νj
∫ t

−∞
eε(t−s)Kij(t− s)Euj(s)ds

}
(12)

Set

h0 =
‖φ− x∗‖2L2

min1≤i≤n{ξi}
.

then s ∈ (−∞, t0], we have

Eui(s) = eε(s−t0)E|yi(s)|2

≤ E|yi(s)|2 = E|φi(s− t0)− x∗i |2

≤ ‖φ− x∗‖2L2 ≤ ξih0. (13)

In the following, we will use the mathematical induc-
tion to prove that,i = 1, 2, · · · , n; k = 1, 2, · · · ,

Eui(t) ≤ ξih0, tk−1 ≤ t < tk, (14)

when k = 1, let us prove that

Eui(t) ≤ ξih0, t0 ≤ t < t1, i = 1, 2, · · · , n. (15)

In fact, if (15) is not true, then there exist some i0
and t∗ ∈ [t0, t1) such that, for t ∈ (−∞, t∗), j =
1, 2, · · · , n.

Eui0(t∗) = ξi0h0, D
+Exi0(t∗) ≥ 0, Euj(t) ≤ ξjh0,

(16)
From (12) and (16), we can get

D+ (Eui0(t∗))

≤ ai0


−2bi0

ai0
ai0

+
ε

ai0
+

 n∑
j=1

|ci0j |µj

+
n∑
j=1

(|αi0j |+ |βi0j |)νj

 ξ0 +
n∑
j=1

[
1

ai0
si0j

+eετ
(

(|αi0j |+ |βi0j |)νj +
1

ai0
wi0j

)
+(|αi0j |+ |βij |)νjri0j(ε)] ξj}h0 (17)

It follows from (10) and (17) that

D+(Eui0(t∗)) < 0.

which is a contradiction. So (15) is true. Suppose that
the inequalities, for i = 1, 2, · · · , n; k = 1, 2, · · · ,

Eui(t) ≤ ξih0, tk−1 ≤ t < tk, (18)

hold for k = 1, 2, · · · ,m. From condition (ii) of this
theorem, we have

|xi(tk)− x∗i | = |xi(t−k ) + Jk(xi(t
−
k ))− x∗i |

= |1− γik||xi(t−k )− x∗i |
≤ |xi(t−k )− x∗i |

for i = 1, 2, · · · , n; k = 1, 2, · · · . Therefore

ui(tk) ≤ ui(t−k ), i = 1, 2, · · · , n; k = 1, 2, · · · .

Furthermore, we can get

Eui(tk) ≤ Eui(t−k ), i = 1, 2, · · · , n; k = 1, 2, · · · .
(19)

It follows from (18) and (19) that

Eui(tm) ≤ Eui(t−m) < ξih0, i = 1, 2, · · · , n. (20)

This, together with both (13), (18) and (20), lead to

Eui(t) ≤ ξih0, t ∈ (−∞, tm], i = 1, 2, · · · , n.
(21)
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It is similar to the proof of (14), we can prove that

Eui(t) ≤ ξih0, t ∈ [tm, tm+1), i = 1, 2, · · · , n.
(22)

By mathematical induction, we can conclude that (14)
holds. Hence

E|xi(t)−x∗i |2 ≤ ξih0e−ε(t−t0), t ≥ t0, i = 1, 2, · · · , n.

So E‖x(t)−x∗‖2 ≤M‖φ−x∗‖2L2e−ε(t−t0), t ≥ t0.
This means that the unique equilibrium point x∗ of
model (1) is globally mean square exponential stable.
The proof is completed. ut

Remark 2 If we don’t consider fuzzy AND and
fuzzy OR operations in system (1), then system
(1) becomes traditional impulsive stochastic Cohen-
Grossberg neural networks with mixed delays. it is
clear that Theorem 6 [21] is corollary of Theorem 6.
Therefore our results generalize the known results.

3 An example

Example Consider the following impulsive stochas-
tic fuzzy neural networks with time-varying delays

and distributed delays

dx1(t) = −(3 + cosxi(t)) [11x1(t)

+0.1f1(x1(t− τ11(t)))

+0.7f1(x2(t− τ12(t))) + I1

+
∧2
j=1 α1j

∫ t
−∞K1j(t− s)fj(yj(s))ds

+
∨2
j=1 β1j

∫ t
−∞K1j(t− s)fj(yj(s))ds)

+
∧2
j=1 T1juj +

∨2
j=1H1juj

]
dt

+σ11(x1(t), x1(t− τ11(t)))dω1

+σ12(x2(t), x2(t− τ12(t)))dω2, t 6= tk

dx2(t) = −(2 + sinx2(t)) [17x2(t)

−0.6f2(x1(t− τ21(t)))

+0.3f2(x2(t− τ21(t))) + I2

+
∧2
j=1 α2j

∫ t
−∞K2j(t− s)fj(yj(s))ds

+
∨2
j=1 β2j

∫ t
−∞K2j(t− s)fj(yj(s))ds)

+
∧2
j=1 T2juj +

∨2
j=1H2juj

]
dt

+σ21(x1(t), x1(t− τ21(t)))dω1

+σ22(x2(t), x2(t− τ22(t)))dω2, t 6= tk

∆x1(tk)) = −(1 + 0.3 sin(1 + k2)x1(t
−
k )

∆x2(tk)) = −(1 + 0.6 sin(1 + k)x2(t
−
k )

(23)
where t0 = 0, tk = tk−1 + 0.2k, k = 1, 2, · · · , and

fi(r) = gi(r) =
1

2
(|r + 1| − |r − 1|),

τij(t) = 0.3| sin t|+ 0.1,Kij(t) = te−t, i, j = 1, 2.

α11 =
5

3
, α21 =

1

3
, α12 = −1

4
, α22 =

3

4
;

β11 =
1

3
, β21 =

2

3
, β12 = −1

4
, β22 =

3

4
;

σ11(x, y) = 0.2x− 0.1y, σ12(x, y) = 0.3x+ 0.1y,

σ21(x, y) = 0.1x+ 0.2y, σ22(x, y) = 0.2x+ 0.1y,
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Let Tij = Hij = Sij = Lij = ui = uj = 1, Ii =
2(i, j = 1, 2).

Obviously, model (23) satisfies assumptions
(A1)− (A4) with

a1 = 2, a1 = 4, a2 = 1, a2 = 3,

b1 = 11, b2 = 17, µi = νi = 1(i = 1, 2).

It can be easily checked that the assumption (A5) is
satisfied with

s11 = 0.15, s12 = 0.02, s21 = 0.3, s22 = 0.09,

w11 = 0.02, w12 = 0.04, w21 = 0.06, w22 = 0.03.

It is easy to compute

Q =

(
−7.6625 0.005

0.1 −7.9

)
, T =

(
2.105 1.21
1.62 1.81

)

and

−(Q+ T ) =

(
5.5575 −1.215
−1.72 6.09

)

is anM−matrix. Clearly, all conditions of Theorem 6
are satisfied. Thus model (23) has a unique equilibri-
um point x∗ which is globally mean square exponen-
tial stable.

4 Conclusion
In this paper, we have studied the existence, unique-
ness and mean square exponential stability of the equi-
librium point for impulsive stochastic fuzzy Cohen-
Grossberg neural networks with mixed delays. Some
sufficient conditions set up here are easily verified and
these conditions are correlated with parameters and
time delays of the system (1). The obtained criteria
can be applied to design globally mean square expo-
nential stable fuzzy Cohen-Grossberg neural network-
s.
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